
1

C- PROGRAMMING

 LECTURE NOTES

INTRODUCTION TO C LANGUAGE

C is a general-purpose high level language that was originally developed by Dennis Ritchie for

the Unix operating system. It was first implemented on the Digital Eqquipment Corporation

PDP-11 computer in 1972.

2

The Unix operating system and virtually all Unix applications are written in the C language. C

has now become a widely used professional language for various reasons.

 Easy to learn

 Structured language

 It produces efficient programs.

 It can handle low-level activities.

 It can be compiled on a variety of computers.

Facts about C

 C was invented to write an operating system called UNIX.

 C is a successor of B language which was introduced around 1970

 The language was formalized in 1988 by the American National Standard Institue

(ANSI).

 By 1973 UNIX OS almost totally written in C.

 Today C is the most widely used System Programming Language.

 Most of the state of the art software have been implemented using C

Why to use C?

C was initially used for system development work, in particular the programs that make-up the

operating system. C was adoped as a system development language because it produces code that

runs nearly as fast as code written in assembly language. Some examples of the use of C might

be:

 Operating Systems

 Language Compilers

 Assemblers

 Text Editors

 Print Spoolers

 Network Drivers

 Modern Programs

 Data Bases

 Language Interpreters

 Utilities

C Program File

3

All the C programs are writen into text files with extension ".c" for example hello.c. You can use

"vi" editor to write your C program into a file.

HISTORY TO C LANGUAGE

C is a general-purpose language which has been closely associated with the UNIX operating

system for which it was developed - since the system and most of the programs that run it are

written in C.

Many of the important ideas of C stem from the language BCPL, developed by Martin Richards.

The influence of BCPL on C proceeded indirectly through the language B, which was written by

Ken Thompson in 1970 at Bell Labs, for the first UNIX system on a DEC PDP-

7. BCPL and B are "type less" languages whereas C provides a variety of data types.

In 1972 Dennis Ritchie at Bell Labs writes C and in 1978 the publication of The C Programming

Language by Kernighan & Ritchie caused a revolution in the computing world.

In 1983, the American National Standards Institute (ANSI) established a committee to provide a

modern, comprehensive definition of C. The resulting definition, the ANSI standard, or "ANSI

C", was completed late 1988.

BASIC STRUCTURE OF C PROGRAMMING

http://cwis/AS/CC/GL/ccglu.html#5
http://www.le.ac.uk/cc/glossary/ccglb.html#8
http://www.digital.com/

4

1. Documentation section: The documentation section consists of a set of comment lines

giving the name of the program, the author and other details, which the programmer

would like to use later.

2. Link section: The link section provides instructions to the compiler to link functions

from the system library such as using the #include directive.

3. Definition section: The definition section defines all symbolic constants such using

the #define directive.

4. Global declaration section: There are some variables that are used in more than one

function. Such variables are called global variables and are declared in the global

declaration section that is outside of all the functions. This section also declares all

the user-defined functions.

5. main () function section: Every C program must have one main function section. This

section contains two parts; declaration part and executable part

1. Declaration part: The declaration part declares all the variables used in the

executable part.

2. Executable part: There is at least one statement in the executable part. These two

parts must appear between the opening and closing braces. The program

execution begins at the opening brace and ends at the closing brace. The closing

brace of the main function is the logical end of the program. All statements in the

declaration and executable part end with a semicolon.

6. Subprogram section: If the program is a multi-function program then the subprogram

section contains all the user-defined functions that are called in the main () function.

User-defined functions are generally placed immediately after the main () function,

although they may appear in any order.

PROCESS OF COMPILING AND RUNNING C PROGRAM

We will briefly highlight key features of the C Compilation model here.

http://www.onlineclassnotes.com/2015/04/what-is-include-directive.html
http://www.onlineclassnotes.com/2015/04/what-is-define-directive.html
http://www.onlineclassnotes.com/2015/04/what-is-user-defined-functions.html
http://www.onlineclassnotes.com/2015/04/what-are-variables-what-are-conditions.html
http://www.onlineclassnotes.com/2015/04/what-are-variables-what-are-conditions.html
http://www.onlineclassnotes.com/2015/04/what-are-variables-what-are-conditions.html
http://www.onlineclassnotes.com/2015/04/what-is-multi-function-program.html
http://www.onlineclassnotes.com/2015/04/what-are-necessities-or-advantages-of.html

5

The C Compilation Model

The Preprocessor

The Preprocessor accepts source code as input and is responsible for

 removing comments

 Interpreting special preprocessor directives denoted by #.

For example

 #include -- includes contents of a named file. Files usually called header files. e.g

o #include <math.h> -- standard library maths file.

o #include <stdio.h> -- standard library I/O file

 #define -- defines a symbolic name or constant. Macro substitution.

o #define MAX_ARRAY_SIZE 100

C Compiler

The C compiler translates source to assembly code. The source code is received from the

preprocessor.

Assembler

The assembler creates object code. On a UNIX system you may see files with a .o suffix

(.OBJ on MSDOS) to indicate object code files.

Link Editor

If a source file references library functions or functions defined in other source files the link

editor combines these functions (with main()) to create an executable file.

6

C tokens are the basic buildings blocks in C language which are constructed together to write a C

program.

Each and every smallest individual unit in a C program is known as C tokens.

C tokens are of six types. They are

Keywords (eg: int, while),

Identifiers (eg: main, total),

Constants (eg: 10, 20),

Strings (eg: ―total‖, ―hello‖),

Special symbols (eg: (), {}),

Operators (eg: +, /,-,*)

C TOKENS

C KEYWORDS

C keywords are the words that convey a special meaning to the c compiler. The keywords

cannot be used as variable names.

The list of C keywords is given below:

auto break case char const

continue default do double else

enum extern float for goto

if int long register return

short signed sizeof static struct

switch typedef union unsigned void

volatile while

7

C IDENTIFIERS

Identifiers are used as the general terminology for the names of variables, functions and arrays.

These are user defined names consisting of arbitrarily long sequence of letters and digits with

either a letter or the underscore(_) as a first character.

There are certain rules that should be followed while naming c identifiers:

They must begin with a letter or underscore (_).

They must consist of only letters, digits, or underscore. No other special character is allowed.

It should not be a keyword.

It must not contain white space.

It should be up to 31 characters long as only first 31 characters are significant.

Some examples of c identifiers:

Name Remark

_A9 Valid

Temp.var Invalid as it contains special character other than the underscore

void Invalid as it is a keyword

C CONSTANTS

A C constant refers to the data items that do not change their value during the program

execution. Several types of C constants that are allowed in C are:

Integer Constants

Integer constants are whole numbers without any fractional part. It must have at least one digit

and may contain either + or – sign. A number with no sign is assumed to be positive.

There are three types of integer constants:

Decimal Integer Constants

Integer constants consisting of a set of digits, 0 through 9, preceded by an optional – or + sign.

Example of valid decimal integer constants

341, -341, 0, 8972

Octal Integer Constants

Integer constants consisting of sequence of digits from the set 0 through 7 starting with 0 is said

to be octal integer constants.

8

Example of valid octal integer constants

010, 0424, 0, 0540

Hexadecimal Integer Constants

Hexadecimal integer constants are integer constants having sequence of digits preceded by 0x or

0X. They may also include alphabets from A to F representing numbers 10 to 15.

Example of valid hexadecimal integer constants

0xD, 0X8d, 0X, 0xbD

It should be noted that, octal and hexadecimal integer constants are rarely used in programming.

Real Constants

The numbers having fractional parts are called real or floating point constants. These may be

represented in one of the two forms called fractional form or the exponent form and may also

have either + or – sign preceding it.

Example of valid real constants in fractional form or decimal notation

0.05, -0.905, 562.05, 0.015

Representing a real constant in exponent form

The general format in which a real number may be represented in exponential or scientific form

is

mantissa e exponent

The mantissa must be either an integer or a real number expressed in decimal notation.

The letter e separating the mantissa and the exponent can also be written in uppercase i.e. E

And, the exponent must be an integer.

Examples of valid real constants in exponent form are:

252E85, 0.15E-10, -3e+8

Character Constants

A character constant contains one single character enclosed within single quotes.

Examples of valid character constants

‗a‘ , ‗Z‘, ‗5‘

It should be noted that character constants have numerical values known as ASCII values, for

example, the value of ‗A‘ is 65 which is its ASCII value.

Escape Characters/ Escape Sequences

9

C allows us to have certain non graphic characters in character constants. Non graphic characters

are those characters that cannot be typed directly from keyboard, for example, tabs, carriage

return, etc.

These non graphic characters can be represented by using escape sequences represented by a

backslash() followed by one or more characters.

NOTE: An escape sequence consumes only one byte of space as it represents a single character.

Escape Sequence Description

a Audible alert(bell)

b Backspace

f Form feed

n New line

r Carriage return

t Horizontal tab

v Vertical tab

\ Backslash

― Double quotation mark

‗ Single quotation mark

? Question mark

 Null

STRING CONSTANTS

String constants are sequence of characters enclosed within double quotes. For example,

―hello‖

―abc‖

―hello911‖

Every sting constant is automatically terminated with a special character „‟ called thenull

character which represents the end of the string.

For example, ―hello‖ will represent ―hello‖ in the memory.

Thus, the size of the string is the total number of characters plus one for the null character.

10

Special Symbols

The following special symbols are used in C having some special meaning and thus, cannot be

used for some other purpose.

[] () {} , ; : * … = #

Braces{}: These opening and ending curly braces marks the start and end of a block of code

containing more than one executable statement.

Parentheses(): These special symbols are used to indicate function calls and function

parameters.

Brackets[]: Opening and closing brackets are used as array element reference. These indicate

single and multidimensional subscripts.

VARIABLES

A variable is nothing but a name given to a storage area that our programs can manipulate. Each

variable in C has a specific type, which determines the size and layout of the variable's memory;

the range of values that can be stored within that memory; and the set of operations that can be

applied to the variable.

The name of a variable can be composed of letters, digits, and the underscore character. It must

begin with either a letter or an underscore. Upper and lowercase letters are distinct because C is

case-sensitive. Based on the basic types explained in the previous chapter, there will be the

following basic variable types −

Type Description

char Typically a single octet(one byte). This is an integer type.

int The most natural size of integer for the machine.

float A single-precision floating point value.

double A double-precision floating point value.

void Represents the absence of type.

11

type variable_list;

int i, j, k;

char c, ch;

float f, salary;

double d;

type variable_name = value;

extern int d = 3, f = 5; // declaration of d and f.

int d = 3, f = 5; // definition and initializing d and f.

byte z = 22; // definition and initializes z.

char x = 'x'; // the variable x has the value 'x'.

C programming language also allows defining various other types of variables like

Enumeration, Pointer, Array, Structure, Union, etc.

Variable Definition in C

A variable definition tells the compiler where and how much storage to create for the variable.

A variable definition specifies a data type and contains a list of one or more variables of that

type as follows −

Here, type must be a valid C data type including char, w_char, int, float, double, bool, or any

user-defined object; and variable_list may consist of one or more identifier names separated by

commas. Some valid declarations are shown here −

The line int i, j, k; declares and defines the variables i, j, and k; which instruct the compiler to

create variables named i, j and k of type int.

Variables can be initialized (assigned an initial value) in their declaration. The initializer

consists of an equal sign followed by a constant expression as follows −

Some examples are −

For definition without an initializer: variables with static storage duration are implicitly

initialized with NULL (all bytes have the value 0); the initial value of all other variables are

undefined.

12

Variable Declaration in C

A variable declaration provides assurance to the compiler that there exists a variable with the

given type and name so that the compiler can proceed for further compilation without requiring

the complete detail about the variable. A variable definition has its meaning at the time of

compilation only; the compiler needs actual variable definition at the time of linking the

program. A variable declaration is useful when multiple files are used.

OPERATORS AND EXPRESSIONS

C language offers many types of operators. They are,

1. Arithmetic operators

2. Assignment operators

3. Relational operators

4. Logical operators

5. Bit wise operators

6. Conditional operators (ternary operators)

7. Increment/decrement operators

8. Special operators

S.no Types of Operators Description

1

Arithmetic_operators

These are used to perform mathematical calculations

like addition, subtraction, multiplication, division

and modulus

2

Assignment_operators

These are used to assign the values for the variables

in C programs.

3

Relational operators

These operators are used to compare the value of two

variables.

4 Logical operators

These operators are used to perform logical

http://fresh2refresh.com/c/c-operators-expressions/c-arithmetic-operators/
http://fresh2refresh.com/c/c-operators-expressions/c-assignment-operators/
http://fresh2refresh.com/c/c-operators-expressions/c-relational-operators/
http://fresh2refresh.com/c/c-operators-expressions/c-logical-operators/

13

operations on the given two variables.

5

Bit wise operators

These operators are used to perform bit operations on

given two variables.

6

Conditional (ternary)

operators

Conditional operators return one value if condition is

true and returns another value is condition is false.

7

Increment/decrement

operators

These operators are used to either increase or

decrease the value of the variable by one.

8 Special operators &, *, sizeof() and ternary operators.

ARITHMETIC OPERATORS IN C

 C Arithmetic operators are used to perform mathematical calculations like addition,

subtraction, multiplication, division and modulus in C programs.

S.no

Arithmetic

Operators

Operation

Example

1 + Addition A+B

2 – Subtraction A-B

3 * multiplication A*B

4 / Division A/B

5 % Modulus A%B

EXAMPLE PROGRAM FOR C ARITHMETIC OPERATORS

In this example program, two values ―40‖ and ―20‖ are used to perform arithmetic operations

such as addition, subtraction, multiplication, division, modulus and output is displayed for each

operation.

http://fresh2refresh.com/c/c-operators-expressions/c-bit-wise-operators/
http://fresh2refresh.com/c/c-operators-expressions/c-conditional-operators/
http://fresh2refresh.com/c/c-operators-expressions/c-conditional-operators/
http://fresh2refresh.com/c/c-operators-expressions/c-increment-decrement-operators/
http://fresh2refresh.com/c/c-operators-expressions/c-increment-decrement-operators/
http://fresh2refresh.com/c/c-operators-expressions/c-special-operators/

14

OUTPUT:

#include <stdio.h>

int main()

{

int a=40,b=20, add,sub,mul,div,mod;

add = a+b;

sub = a-b;

mul = a*b;

div = a/b;

mod = a%b;

printf("Addition of a, b is : %d\n", add);

printf("Subtraction of a, b is : %d\n", sub);

printf("Multiplication of a, b is : %d\n", mul);

printf("Division of a, b is : %d\n", div);

printf("Modulus of a, b is : %d\n", mod);

}

Addition of a, b is : 60

Subtraction of a, b is : 20

Multiplication of a, b is : 800

Division of a, b is : 2

Modulus of a, b is : 0

ASSIGNMENT OPERATORS IN C

In C programs, values for the variables are assigned using assignment operators.

For example, if the value ―10‖ is to be assigned for the variable ―sum‖, it can be assigned as

―sum = 10;‖

Other assignment operators in C language are given below.

15

Operators Example Explanation

Simple

assignment

operator

=

sum = 10

10 is assigned

to variable sum

Compound

assignment

operators

+=

sum +=

10

This is same as

sum = sum + 10

-=

sum -= 10

This is same as

sum = sum – 10

*=

sum *=

10

This is same as

sum = sum * 10

/+

sum /= 10

This is same as

sum = sum / 10

%=

sum %=

10

This is same as

sum = sum %

10

&=

sum&=10

This is same as

sum = sum &

10

^=

sum ^=

10

This is same as

sum = sum ^ 10

EXAMPLE PROGRAM FOR C ASSIGNMENT OPERATORS:

In this program, values from 0 – 9 are summed up and total ―45‖ is displayed as output.

Assignment operators such as ―=‖ and ―+=‖ are used in this program to assign the values and to

sum up the values.

16

OUTPUT:

include <stdio.h>

int main()

{

int Total=0,i;

for(i=0;i<10;i++)

{

Total+=i; // This is same as Total = Toatal+i

}

printf("Total = %d", Total);

}

S.no Operators Example Description

1

>

x > y

x is greater than

y

2 < x < y x is less than y

3

>=

x >= y

x is greater than

or equal to y

4

<=

x <= y

x is less than or

equal to y

Total = 45

RELATIONAL OPERATORS IN C

Relational operators are used to find the relation between two variables. i.e. to compare the

values of two variables in a C program.

17

OUTPUT:

 5 == x == y x is equal to y

6

!=

x != y

x is not equal to

y

EXAMPLE PROGRAM FOR RELATIONAL OPERATORS IN C

In this program, relational operator (==) is used to compare 2 values whether they are equal

are not.

If both values are equal, output is displayed as ‖ values are equal‖. Else, output is displayed

as ―values are not equal‖.

Note: double equal sign (==) should be used to compare 2 values. We should not single

equal sign (=).

#include <stdio.h>

int main()

{

int m=40,n=20;

if (m == n)

{

printf("m and n are equal");

}

else

{

printf("m and n are not equal");

}

}

m and n are not equal

18

S.no Operators Name Example Description

1

&&

logical

AND

(x>5)&&(y<5)

It returns true

when both

conditions

are true

2

||

logical

OR

(x>=10)||(y>=10)

It returns true

when at-least

one of the

condition is

true

3

!

logical

NOT

!((x>5)&&(y<5))

It reverses the

state of the

operand

―((x>5) &&

(y<5))‖

If ―((x>5)

&& (y<5))‖

is true,

logical NOT

operator

makes it false

#include <stdio.h>

int main()

{

EXAMPLE PROGRAM FOR LOGICAL OPERATORS IN C:

LOGICAL OPERATORS IN C

These operators are used to perform logical operations on the given expressions.

There are 3 logical operators in C language. They are, logical AND (&&), logical OR (||) and

logical NOT (!).

19

OUTPUT:

int m=40,n=20;

int o=20,p=30;

if (m>n && m !=0)

{

printf("&& Operator : Both conditions are true\n");

}

if (o>p || p!=20)

{

printf("|| Operator : Only one condition is true\n");

}

if (!(m>n && m !=0))

{

printf("! Operator : Both conditions are true\n");

}

else

{

printf("! Operator : Both conditions are true. " \

"But, status is inverted as false\n");

}

}

&& Operator : Both conditions are true

|| Operator : Only one condition is true

! Operator : Both conditions are true. But, status is inverted as false

In this program, operators (&&, || and !) are used to perform logical operations on the given

expressions.

20

&& operator – ―if clause‖ becomes true only when both conditions (m>n and m! =0) is true.

Else, it becomes false.

|| Operator – ―if clause‖ becomes true when any one of the condition (o>p || p!=20) is true. It

becomes false when none of the condition is true.

! Operator – It is used to reverses the state of the operand.

If the conditions (m>n && m!=0) is true, true (1) is returned. This value is inverted by ―!‖

operator.

So, ―! (m>n and m! =0)‖ returns false (0).

BIT WISE OPERATORS IN C

These operators are used to perform bit operations. Decimal values are converted into binary

values which are the sequence of bits and bit wise operators work on these bits.

Bit wise operators in C language are & (bitwise AND), | (bitwise OR), ~ (bitwise OR), ^ (XOR),

<< (left shift) and >> (right shift).

TRUTH TABLE FOR BIT WISE OPERATION BIT WISE OPERATORS

x

y

x|y

x

&

y

x

^

y

Operator_symbol

Operator_name

0 0 0 0 0 & Bitwise_AND

0 1 1 0 1 | Bitwise OR

1 0 1 0 1 ~ Bitwise_NOT

1 1 1 1 0 ^ XOR

<< Left Shift

>> Right Shift

Consider x=40 and y=80. Binary form of these values are given below.

x = 00101000

y= 01010000

	INTRODUCTION TO C LANGUAGE
	Facts about C
	Why to use C?

	HISTORY TO C LANGUAGE
	BASIC STRUCTURE OF C PROGRAMMING
	PROCESS OF COMPILING AND RUNNING C PROGRAM
	The C Compilation Model
	The Preprocessor
	C Compiler
	Assembler
	Link Editor

	C TOKENS
	C IDENTIFIERS
	C CONSTANTS
	Integer Constants
	Decimal Integer Constants
	Octal Integer Constants
	Hexadecimal Integer Constants
	Real Constants
	Representing a real constant in exponent form
	mantissa e exponent
	Character Constants
	Escape Characters/ Escape Sequences
	STRING CONSTANTS
	Special Symbols
	VARIABLES
	OPERATORS AND EXPRESSIONS
	EXAMPLE PROGRAM FOR RELATIONAL OPERATORS IN C

